In this article we continue our investigation of the iterative regularizationmethod for optimization problems based on Bregman distances. The optimizationproblems are subject to pointwise inequality constraints in $L^2(\Omega)$. Weprovide an estimate for the noise error for perturbed data, which can be usedto construct an a priori stopping rule. Furthermore we show how to implementour method with a semi-smooth Newton method using finite elements and presentnumerical results for the stopping rule.
展开▼
机译:在本文中,我们继续研究基于Bregman距离的优化问题的迭代正则化方法。优化问题受制于$ L ^ 2(\ Omega)$中的逐点不等式约束。我们提供了对扰动数据的噪声误差的估计,该估计可用于构建先验停止规则。此外,我们还展示了如何使用半光滑牛顿法(使用有限元和停止规则的数值结果)来实现我们的方法。
展开▼